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Appendi~: VII: Public Key systems

Before about 1970 tr..erewere a few AIclericannongovernment mathema-
ticians who were interes'ted in cryptology, some even to the extent of
carrying out research in it over a period of years; [2), [145 ~, ar;d
[155} are exawples. How.aver, public cryptology reall.y came to l~~e 7n
1976 with the publication of "New Directions in Cryptography" by D~ff~e
and Hellman, [86], although that paper was clearly the result of ear-
lier research on the part of the authors. (Their interest in cryptolo-
gy had come to the attention of NSA somewhat earlier when Hellman ob-
jected strongly to the Data Encryption Standard (DES), [9].) One of
the ideas in IINew Directions" that caught the imagination of many math-
ematicians and computer scientists around the world was what the. au-
thors called "public key cryptography", an idea that had been put forth
internally by James Elli:sin 1970, (92], under the appellation "nonsec-
ret encryption".

Enc1:,yption can be E~xpressed abstractly as the transformation of a
plain text message into a cipher message under the control of a key. In
classical cryptographic systems, the transformation is usually fairly
simple: for instance, the key may determine the starting point in a
long sequence of "random" numbers which are to be added to the sequence
of plain text values, th.eresult being a sequence of cipher values. To
decrypt, the same seq1:~ence of random values, starting at the same
po int, must be subtrac:ted from the cipher sequence. The random se-
quence and the key (starting point) must therefore be available to both
the sender and the rec::eiverof the message, but not to anyone else.
The transformation (addition) is simple and can easily be undone by sub-
traction.

In c:ontrast, public: key encryption uses some much more complicated
transformation, one that is "easy" to perform with any specified key
but can be undone only with a different key (this decryption key must
obviously be related t.o t~e encryption key). The idea is that the
t=ansformation should bE~ of such a nature that the relation bet~een en-
cryption and decryption. keys is so complicated it requires an exorbi-
tant amount of work tCI calculate one from the other unless one knows
some secret ingredient of the relationship. The transformation algo-
rithm itself can be made public as long as the secret ingredient is
known only to the receiver of a message; to enable someone to send him
a message, the recipier.~tchooses an encryption key, calculates its re-
lated decryption key using the secret information that he has about the
relationship, and openly sends the encryption key to the message
sender. .The sender (and. possib-ly everyone else in the world) knows the
transfo~~ation method and the encryption key and can therefore encrypt
a message and send it to the receiver. However, only the receiver can
decrypt it because no one else can feasibly determine the decryption
key.

Not many transfo):-mations suitable for public key cryptosystems
have been found so far. The best-known ones are the knapsack system,
[1631, the RSA system, (194), the exponentiation system, [77}, and
McEl~ece' s system, (162). Some variations of these as well as a few
other public key cryptosystems are discussed in [55] and [180], with
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sketc::hes of attacks on most of them. Both the RSA and exponentiation
systEams were invented internally before their public appearances; c: c.
Cocks, [73.], devised what is essentially the RSA system, ,and R.l;ck
Proto, [188], had suggested the exponentiation scheme as an "~rrev7rs-
ible" transformation, prior to Ellis' paper on nonsecret encr t
No public key cryptosystem has et been used 0 erationall

A. Knapsacks, [163]

The knapsack public key system is based on the difficulty of solv-
ing the following problem: a large number (perhaps 100) of positive i~-
tegers of various sizes are specified, and someone selects a subset of
them, adds up the integers in the subset, and tells you that sum. Your
problem is to determine which integers were selected for the subset.

This problem is hard in the sense that no one has succeeded in de-
vising an algorithm guaranteed to solve any such problem (i.e., for any
such set of specified integers) with an amount of work depending polyne-
mially on the number of specified integers. There are certain classes
of specified sets, though, for which it is easy to solve the problem.
Fer example, suppose the integers a(l), a(2), ..., a(lOO) have the prop-
erty that a(1)<a(2), a(1)+a(2)<a(3), ... ,and so on up to a(1)+a(2)+
~ ..+a(99)<a(100). (Such a set is called superinc=easing.) Then if the
sum of a subset is S, it is easy to tell whether a(lOO) was in the sub-
set because S must be less than aCIOO) if it was not in the subset and
S must be greater than or equal to a(lOO) if it was in the subset. If
a(lOO) is found to be in the subset, subtract it from S to get S';
ot~erwise, let SI equal S. Then it is easy to tell whether a(99) was
in the subset by comparing it with SI. This process can be continued,
and will quickly determine the subset whose sum is S.

Merkle and Hellman, [163), suggested that a public key cryptosys-
tem could be based on a superincreasing set of positive integers by
transforming it into another set as follows. First choose a modulus,
m, that is larger than the sum of all integers in the set, and choose a
multiplier x that is relatively prime to m~ m, x, and the a's are sec-
ret c=yptovariables. Then let b(i) be the least positive residue of
x*a(i) module m, and use the bls as pUblic cryptovariables. To send a
mess~ge, convert it to binary form by any convenient coding, split it
up into blocks of 100 bits each, and use each block in turn to select a
subset of the b IS according to whether successive bits are 0 or 1.
Fo~ the sums of the selected subsets and transmit them as cipher. .

. The recipient can decrypt (a block at a time) by forming y*S modu-
lo m where S is a sum (cipher) and y is the inverse of x modulo m; only
the recipient can determine y because no one else knows x and m. Since
S = sum {b (i)*p (i)}, where p (i) is the i-th plain text bit of the
block, it is true that S is congruentto sum {x*a(i)*p(i)}and there-
fore y*s is congruent to sum {a(i)*p(i)}. But then the problem is one
of dealing with a superincreasing set and that is easy. A cryptana-
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lyst, on the other ,hand, knows only the b's and is therefore faced with
a facsimile of the general knapsack problem.

Hellman and Merkle also remarked that one could iterate the trans-
form procedure by choosing another modulus m' larger than the sum of
the b' s and another multiplier Xl relatively prime to m', and taking
c(i) to be the least positive residue of x'*b(i). This, could be r7--
peated as often as desired. Note, however, that the publ~c cryptovar~-
abIes (the "knapsack numbers") will get larger and larger, on the aver-
age, and therefore the cipher sums will also get larger and larger. In
fact, even a single transformation will result in an increase of the
average n\unber of cipher bits over the number of plain text bits.

B. RSA, [194]

The so-called RSA public key cryptosystem is based on the diffi-
culty of factoring integers, a process that is known empirically to be
laborious but which has not been proved to have any specified degree of
difficul ty. c.c. Cocks of GCHQ in 1973, [73), suggesteda slightly
less general version of the RSA system, which did not appear until four
years later.

In the RSA system, two large prime numbers p and q (of perhaps 100
digits each) are selected by the recipient to be the secret cryptovari-
abIes. The recipient also chooses a number e relatively prime to both
p-l and q-l. The numbers m=p*q and e are the public cryptovariables.
To encipher a message, the sender converts it by any convenient means
into a sequence of positive integers each less than m. He then raises
each of them to the e-th power modulo m and transmits the sequence of
powers as cipher. Since the recipient knows p and q, he is able to de-
termine the unique number d for which d*e is congruent to 1 modulo
(p-l)*(q-l) i he then raises each cipher number to the d~th power modulo.
m to obtain the sequence of plain text values. If a cryptanalyst were
able to factor the publicly available modulus m, then he also could de-
crypt the message; the assumption is that factoring is too hard.

One drawback to the RSA system is that it requires one to find
prime numbers large enough to make factoring infeasible. It is thought
that each prime should have in the neighborhood of 100 digits. It
might seem to a nonmathematician that finding such primes would itself
involve a factoring process, but that is not the case. Testing an inte-
ger for primality is much easier than actually finding its factors, and
the appearance of RSA in fact '~timulated some new ideas which have im-
proved such testing. Public researchers also discovered weaknesses as-
sociated with using primes of a certain form in the RSA system, so that
finding acceptable ones is somewhat more complicated than merely find-
ing large ones. Of course, performing modular arithmetic with such
large numbers demands either multiple precision computer routines or
specially designed chips.

c. Exponentiation, [77)

The public key cryptosystem based on exponentiation relies for se-
curi ty on the difficulty of finding "logarithms" of elements in finite
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Logarithms in finite fields are defined differently from or~nary
logarithms. The nonzero elements of a finite field of order p may
be represented as powers of a primitive element of the field. There is

. more than one primitive element available, but once one has been se-
lect:ed (called the generator), the logarithm of an element relative to
the generator is defined to be the least power to which the generator
mURt be raised to equal the element. The logarithm is unique modulo
(p )-1. .

In the exponentiation system, some large finite field GF (pn) is
selected to be the public cryptovariable. To encrypt a message, the
sender converts it by any convenient method to a sequence of elements
of the finite field. To encipher each value y of the m5ssage, he t~en
chooses some exponent e which has an inverse d modulo p -I, and trans-
mits to the recipient ye. The recipient also chooses some exponent g
which has an inverse f mod~lo pn_l, and transmits back

te?~ha sender
the fie~d element (ye). The sender forms «y ) which
eq~ats y and sends that to the recipient who can then calcuLate
(y ) =y. Since (e,d) and (g,f) are known only to the sender andre-
cipient, respectively, no one else is supposed to be able to decipher
the message y. If a cryptanalyst were able to solve the discrete loga-
rithm problem, however, he could recover e and g, determine d and f,

. and so decrypt the message. .

Note that when p=2, the field elements can be represented as poly-
nomials with coefficients in the field of integers modulo 2, reduced
modulo some irreducible polynomial f(x). Assuming that f is primitive,
any nonzero polynomial of the field may then be represented as! some
power of x, and exponentiation can be perfor:ned by an appropriate type
of linear shift register with feedback polynomial f. This is the con-
nection with the distance problem. '

A drawback of the exponentiation public key cryptosystem is that
it requires three transmissions (two from sender to receiver, one from
receiver to sender) in order to communicate information. Because of
this, it seems to be suitable only for short and infrequent messages.
In fact, when it first appeared (in [86J) the authors (Diffie and Hell-
man) proposed it merely for USe in establishing the cryptovariables to
be used for a conventional cryptographic system. .

The idea of using the grou~ of points on an elli~tic curve over a
f~nite field, and exponentiating-in that group, is receiving some atten-
tlon at the present time, [165]. Not much is known about it as yet, al-
though elliptic curves are being intensively studied in connection with
factoring algorithms as well. .
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D. McEliece'ssysteltt" [162]
,

In this pUblic key c::ryptosystem,the public key is a large k by n
matrix G', where k<n, formed in the following way. First, the re-
cipient chooses a k by n generator matrix G for some Goppa code ([137]
contains a definition of Goppa codes and further references for them)
wi th the ability to corrE~ct terrors. Then he chooses a random nonsin-
gular k by k matrix S (01:1ewith not too many 0 entries) and a random n
by n permutation matrix P. The matrices G, S, and P are the secret
cryptovariables, and GI is the matrix product S*G*P.

To encipher a message, the sender converts it to a sequence of
bits by any convenient means, breaks it up into k-bit segments, and en-
ciphers each segment by considering it as a vector and multiplying it
by G I, then garbling t J:-andomlychosen bits of the product. That is,
the n-bit cipher sequence c is m*GI+e where m is the plain text segment
and e is the "error vector".

. The recipient deciphers the messa..9:rby first ~'iltiplying c by the
J..nverseof P to get the vector c*P =m*S*G+e*P . He then uses G
to "correct" the "errors" the sender deliberately intr_'1duced, the
result being m*5. F:~nally, he multiplies this by S (Le., S
inverse) to obtain the message m. A cryptanalyst, not knowing S, P, or
G (the code), is supposedly unable to decipher the message without ex-
pending a prohibitive amc)unt of work.
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